Skip to main content

Computational Modelling of Multiple Myeloma Patient Genomic Signatures to Predict Treatment Outcome

 Multiple myeloma (MM) is characterized by the invasion of malignant plasma cells into the bone marrow. While first line treatment options result in significant clinical benefit to patients, spatiotemporal clonal evolution results in disease relapse and mortality. Advances in genomics have armed clinicians with unprecedented insight into the molecular architecture of MM cells, however, the clinical benefit derived by genomics-guided intervention has been limited. We present a novel computational biology modelling (CBM) tool, which takes into account the combined effect of individual mutations, gene copy number abnormalities and large scale chromosomal changes in order to predict the salient molecular pathways utilized by the MM cell for survival. By reverse-engineering MM cell architecture in silico, the CBM tool is able to predict drug response and resistance mechanisms. Thus, our aim was to determine the accuracy of the CBM tool in predicting treatment response of relapsed/refractory MM patients for future management of their disease, in a more individualized manner.

Blood Journal 2018
READ MORE

STAY INFORMED

Top