Skip to main content

Biosimulation Using the Cellworks Computational Omics Biology Model (CBM) Identifies Immune Modulation As a Key Pathway for Predicting Azacitidine (AZA) Response in Myelodysplastic Syndromes (MDS)

Background: DNA methyltransferase inhibition (DNMTi) with the hypomethylating agents (HMA) azacitidine (AZA) or decitabine, remains the mainstay of therapy for the majority of high-risk Myelodysplastic Syndromes (MDS) patients. Nevertheless, only 40-50% of MDS patients achieve clinical improvement with DNMTi. There is a need for a predictive clinical approach that can stratify MDS patients according to their chance of benefit from current therapies and that can identify and predict responses to new treatment options. Ideally, patients predicted to be non-responders (NR) could be offered alternative strategies while being spared protracted treatment with HMA alone that has a low likelihood of efficacy. Recently, an intriguing discovery of immune modulation by HMA has emerged. In addition to the benefits of unsilencing differentiation genes and tumor suppressor genes, HMA’s reactivate human endogenous retroviral (HERV) genes leading to viral mimicry and upregulation of the immune response as a major mechanism of HMA efficacy. Although the PD-L1/PD1 blockade plus HMA has been recognized as a beneficial combination, there are no established markers to guide decision-making. We report here the utility of immunomic profiling of chromosome 9 copy number status as a significant mechanism of immune evasion and HMA resistance. ASH Annual Meeting 2021 Myelodysplastic Syndrome
READ MORE

STAY INFORMED

Top