Predicting Resistance to the Combination of ATO and ATRA in APL Patients with PML-Rara Fusions, Using a Computational Biology Modeling Approach
Background: Acute promyelocytic leukemia (APL) is a biologically and clinically distinct subtype of acute myeloid leukemia (AML) with unique molecular pathogenesis, clinical manifestations, and treatment. APL is cytogenetically characterized by a balanced translocation t(15;17) (q24;q21), which involves the retinoic acid receptor alpha (RARA) gene on chromosome 17 and the promyelocytic leukemia (PML) gene on chromosome 15 that results in a PML-RARA fusion gene (PMID: 30575821). The PML-RARA fusion gene is the most critical event involved in the pathogenesis of APL, reported in 99% of APL patients (PMID: 32182684). The fusion confers a selective sensitivity to the targeted drugs, arsenic trioxide (ATO) and all-trans-retinoic acid (ATRA), with response rates over 90% (PMID: 31635329). Blood Journal 2020 Acute Myeloid Leukemia
READ MORE